On Mod (2s+1)-Orientations of Graphs

نویسندگان

  • Ping Li
  • Hong-Jian Lai
چکیده

An orientation of a graph G is a mod (2p+1)-orientation if, under this orientation, the net out-degree at every vertex is congruent to zero mod 2p+1. If, for any function b : V (G) → Z2p+1 satisfying ∑ v∈V (G) b(v) ≡ 0 (mod 2p + 1), G always has an orientation D such that the net outdegree at every vertex v is congruent to b(v) mod 2p + 1, then G is strongly Z2p+1-connected. The graph G′ obtained from G by contracting all nontrivial subgraphs that are strongly Z2s+1connected is called the Z2s+1-reduction of G. Motivated by a minimum degree condition of Barat and Thomassen [J. Graph Theory, 52 (2006), pp. 135–146], and by the Ore conditions of Fan and Zhou [SIAM J. Discrete Math., 22 (2008), pp. 288–294] and of Luo et al. [European J. Combin., 29 (2008), pp. 1587–1595] on Z3-connected graphs, we prove that for a simple graph G on n vertices, and for any integers s > 0 and real numbers α, β with 0 < α < 1, if for any nonadjacent vertices u, v ∈ V (G), dG(u)+ dG(v) ≥ αn+β, then there exists a finite family F(α, s) of nonstrongly Z2s+1connected graphs such that either G is strongly Z2s+1-connected or the Z2s+1-reduction of G is in F(α, s).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Author's Personal Copy Discrete Applied Mathematics on Strongly Z 2s+1 -connected Graphs

An orientation of a graph G is a mod(2s + 1)-orientation if under this orientation, the net out-degree at every vertex is congruent to zero mod(2s + 1). If for any function b : V (G) → Z2s+1 satisfying  v∈V (G) b(v) ≡ 0 (mod 2s + 1), G always has an orientation D such that the net out-degree at every vertex v is congruent to b(v) mod (2s + 1), then G is strongly Z2s+1-connected. In this paper,...

متن کامل

MOD ( 2 p + 1 ) - ORIENTATIONS AND

In this paper, we establish an equivalence between the contractible graphs with respect to the mod (2p + 1)-orientability and the graphs with K1,2p+1-decompositions. This is applied to disprove a conjecture proposed by Barat and Thomassen that every 4-edge-connected simple planar graph G with |E(G)| ≡ 0 (mod 3) has a claw decomposition.

متن کامل

On mod (2p+1)-orientations of graphs

It is shown that every (2p+ 1) log2(|V (G)|)-edge-connected graph G has a mod (2p+ 1)orientation, and that a (4p+ 1)-regular graph G has a mod (2p+ 1)-orientation if and only if V (G) has a partition (V , V −) such that ∀U ⊆ V (G), |∂G(U)| ≥ (2p+ 1)||U ∩ V | − |U ∩ V −||. These extend former results by Da Silva and Dahad on nowhere zero 3-flows of 5-regular graphs, and by Lai and Zhang on highl...

متن کامل

Mod (2p + 1)-Orientations and $K1,2p+1-Decompositions

In this paper, we established an equivalence between the contractible graphs with respect to the mod (2p + 1)-orientability and the graphs with K1,2p+1-decompositions. This is applied to disprove a conjecture proposed by Barat and Thomassen that every 4-edge-connected simple planar graph G with |E(G)| ≡ 0 (mod 3) has a claw-decomposition.

متن کامل

On dense strongly Z2s-1-connected graphs

Let G be a graph and s > 0 be an integer. If, for any function b : V (G) → Z2s+1 satisfying  v∈V (G) b(v) ≡ 0 (mod 2s+1), G always has an orientation D such that the net outdegree at every vertex v is congruent to b(v)mod 2s+1, then G is strongly Z2s+1-connected. For a graph G, denote by α(G) the cardinality of a maximum independent set of G. In this paper, we prove that for any integers s, t ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Discrete Math.

دوره 28  شماره 

صفحات  -

تاریخ انتشار 2014